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Diffraction of blast wave for the oblique case 

By R. S. SRIVASTAVA A N D  M. G. CHOPRA 
Defence Science Laboratory, Delhi-6 

(Received 26 November 1968) 

In  this paper the problem of interaction of an oblique blast wave encountering 
a small bend along a plane wall is studied for the case when relative outflow from 
the reflected shock is supersonic. A theoretical solution is developed completely 
with the help of conformal transformations and complex variable techniques. 
Numerical results showing the pressure distribution along the wall have been 
,obtained for two incident shock strengths. 

Introduction 
Lighthill (1949) considered the diffraction of a plane shock travelling parallel 

t o  a wall and meeting a corner where the wall turns through a small angle. The 
analogous problem for a plane shock hitting the wall obliquely, together with 
the associated reflected shock has been considered by Srivastava (1968) by 
employing the techniques developed by Lighthill. Srivastava & Ballabh (1955) 
established that the region within the incident and reflected shock remains un- 
disturbed after the shock configuration has crossed the bend. Srivastava (1968) 
developed the mathematical theory for the cases when the relative outflow from 
the reflected shock is subsonic and sonic. The present investigation is concerned 
with the diffraction effects when the relative outflow behind the reflected shock 
before diffraction is supersonic. In  fact this work is the continuation of 
Srivastava’s work, and the method of solution is on the same lines, with necessary 
modifications. The main feature of the present problem is that the non-uniform 
region is enclosed by the arcs of the Mach circle, the wall and the reflected- 
diffracted shock, The region of disturbance is not symmetric about the 
corner. 

Lighthill (1950) encounters a similar situation where the non-uniform region, 
having symmetry about the corner, is bounded by the arcs of the Mach circle, 
the wall and the diffracted shock. The disturbed region is transformed into a 
rectangle and the solution is constructed therein. In the process the shock 
boundary condition is expanded into a Fourier Series, the resulting solution 
involving certain infinite products. 

In the present case we use an alternative approach and construct the solution 
in a semi-infinite plane retaining the shock boundary condition in its original 
form. Numerical curves showing the pressure distribution along the wall for two 
incident shock strengths have been obtained. 

Our attention has been drawn by Lighthill to Ter-Minassiants’ (1969) treat- 
ment of the same problem. Ter-Minassiants obtains the solution by an ingenious 
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adaptation of Lighthill's (1 950) method. As the present investigation is based on 
an independent approach, we have availed ourselves of the opportunity of com- 
paring the respective results. 

Mathematical formulation 
The flow variables across the incident and reflected shock before the oblique 

shock configuration has encountered the bend are related, in the notation of 
figure 1, as 
I 

q l =  Qi.7(1-& p l = Q p o  (-' u -- 7 )  ) p1= 

q2 = g(u*-q1) 1--- 4 )+Pl>  P2 = QP1 [ ( U  *-- q1) 2 -7 at],} { (U* - q1)2  
(1) 

I 

where i.7 = Usina,, U* = Usina,, ijl = -qlcos(a,+az), 

(i2 = q2sina, and a = (yp/p)h. 

Reflected shock 

927 Pz, Pz a2 

///// 
3 /& 

FIGURE 1 

Let the pressure, density, velocity and entropy of the flow field behind the 
reflected-diffracted shock after diffraction be pk, p;, ql and s;. Using small 
perturbation theory and conical field transformations, the flow equations can 
be linearized, and they yield a single second-ordcr partial differential equation 
in p ,  viz. a a  

x - q2t Y 

a2p2q2 a2t a d  
where p = - - ,  Pi -P2 x=- , y = - and q; = q2(1 +u,v ) .  

The characteristics of (2)  are tangents to the unit circle x2 + y2 = 1, and there- 
fore the region of disturbance will be bounded by the unit circle, reflected- 
diffracted shock and the wall. The intersection or otherwise of the unit circle 
with the reflected-diffracted shock will depend in general on whether 
{(U-q,)/a,}sina, $ 1. But it can easily be proved with the help of regular 
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reflexion theory developed by Bleakney & Taub (1949) that we would always 

The possible configurations are shown in figures 2 (a)  and (b). The flow in region 5 
is given by (l), and in region 3, too, (1) holds, but with changed angle of incidence. 
To determine the flow in the disturbed region, on the other hand, we have to 
solve (2) under the following boundary conditions : 

Following Srivastava (1968), on the shock boundary x = K - y cot a2 we have 

where A’s and B’s are constants and K = (( U - q2)/a,}. 
Now, sincev = -Sa t  A andv = Oat C 

where I? denotes the diffracted part of the shock and S is the bend. 

whether the corner is within or outside the disturbed region: 

wall &play = 0 except at the corner where 

The boundary conditions on the wall and parts of the unit circle depend on 

(i) Corner included in the region of disturbance (q2/a, < 1, figure 2 (a)). On the 
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On the arc CD, p = 0 and on AB, p = constant. 
(ii) Corner excluded from the region of disturbance (q2/a2 > 1 ,  figure 2 ( b ) ) .  

On the wall apjay = 0, on the arc AB, p = constant, on the arc CT, p = 0 and 
on the arc TD, p = - M26/(Mi - 1)*. 

It may, however, be pointed out that in the course of numerical calculations 
it was observed that the configuration (2  ( b ) )  arises only for very high shock 
strengths and that too when the angle of incidence is near the sonic angle 
(Bleakney & Taub 1949). 

R. X. Srivastava and M .  G. Chopra 
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FIGURE 3. <-plane. 

Solution of the problem 
Using Busemann’s (1943) transformation, 

1 - (1 - r2)3 
x = rcostl, y = rsin8, p = - 

r ’  

(2) becomes Laplace’s equation in plane polar co-ordinates, and the boundaries 
are transformed as shown in figure 3. Each of the angles of the curvilinear 
quadrilateral bounding the disturbed region is now a right angle. The shock 
boundary condition becomes (Srivast.ava 1968, equations (21), (22)) 

(1  - K 2  see2 @)9 ap/an C,+ D,tan 0 +El tan2@ +Pl tan3 0 - K 2  tanO + 

._ ___ -- 
C; + D; tan 0 + E; tan2 0 +Pi tan3 0 K f 2  K’2 apjas’ ( 5 )  

where K = Ksina,, K2+ K’2  = 1 and C’s, D’s, etc., are known constants, 
0 = e-(4?T-a2). 

The corner ( - A!,, 0) transforms to 

and the condition holding there becomes 

Now p is given as a harmonic function satisfying certain boundary conditions 
in the quadrilateral ABCD with AB, BC and CD as circular arcs and DA as 
straight segment. The solution of this potential problem with the prescribed 



Diflraetion of blast wave 825 

boundary conditions is obtained by transforming the region bounded by ABCD 
to semi-infinite medium in the 2,-plane by the following successive conformal 
transformations. 

(i) The transformation 

5 = pei@ 

transforms the region bounded by ABCD to quarter space having a semi-circular 
cut with centre (0, a+Z) and radius a (figure 4 (a)) ,  where 

K - sin a, 
1 - Ksina, + K’ cosa,’ 

and I =  K’ 
K’ sin a, + K cos a, 

a =  ___ 

The circular arc D, A ,  is the mapping of the wall, A,B, of unit circle, B, C, of the 
shock front, and C,D, of the other part of the unit circle. 

(ii) This quarter space is transformed to the region between two semi-circles 
(figure 4 (b ) )  with the help of conformal transformation 

a z -  - (a+Z)+iZ,’ 

The radius of the inner circle is b = a/{2(a + I ) }  and of the outer one is unity. 
(iii) Transformation 2, = (2, - h)/(hZ, - 1) converts the region between two 

non-concentric semi-circles to the region between two concentric semi-circles of 
radii unity and h = [cos a, + (cos2a2 - K’,)&]/K’ (figure 4 (c)). 

(iv) 2, = - in- + i log 2, maps the region between two concentric semi-circles 
to the region bounded by the rectangle (figure 4 (d))  having the corners A,(in,O) 
B,(+n, logh), C4( - Bn, log A )  and D4( - iv, 0). 

(v) Elliptic function transformation 

where E‘ = in/E(K), 2 is the modulus of transformation satisfying 

converts the region bounded by the rectangle to a semi-infinite plane (figure 
4 ( e ) ) .  In  this transformed 2,-plane, 
- 1 / K  to - 1 corresponds to the part of the unit circle C,D4, 
- 1 to + 1 corresponds to the wall D, A,, 
+ 1 to + 1 / ~  corresponds to the other part of the unit circle A,B,, 
+ l/i? to + 00 corresponds to the part B,O of the shock front, while 
- 00 to - l/i? corresponds to the remaining part OC, of the shock 
Under these transformations the shock boundary condition (5) reduces to 

aPPY1 
aPlax1 

- KP2C, + (Kt2D, - K2C;) tan 0 + (K’,E, - K2D;) tan2 0 + (K’,P, - K2E;) tan3 0 - 
[K’,  - K 2  tan2 @I* [C; + D; tan 0 + E; tan2 01 

1 
for lxll > = (y, = 0). (8) 

K 
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Here tan 0 = ( K ' / K )  (2;- 1)/(2;+ 1) where 2, is replaced in terms of 2, with the 
help of transformations (i) to (v). 

The corner is transformed successively to 

and 

I-(l-N;p 

M2 
.-___ { - sin a, + i cos a2} in 5-plane, 

K'( 1 - M;)+ + i (K  + M, sin az) 
1 + M,(K sin a, - K' cos a,) 

- in 2,-plane, 

in 2,-plane. 
(1 - M;)*J(cOs2a2 - K'2) - Qn + tan-, _ _ _ _ ~ ~ - . .  { M, K + sincc, 

Shock Unit circle Wall Unit circle Shock 

-m d -I//?-1 + 1  I / X  +a3 
0 4  A4 EkL FIGURE (4 4. (a )  Z,-plEme, (5) 2,-plane, ( c )  2,-plane, (d )  2,-plane, (4 ( e )  z,-plane. 

The co-ordinates of the corner q, in the 2,-plane are obtained with the help of 
transformation (v). 

The wall boundary condition becomes ap/ay, = 0 for - 1 < x1 < + 1, y1 = 0, 
and the discontinuity condition (6) at the corner now becomes 



Diffraction of blast wave 827 

The condition on the parts of the unit circle can be written as aplax, = 0. But, 
when M, > 1, this must be supplemented with the condition 

which holds at xo of the 2,-plane corresponding to the point 

1 - i (Mi  - 1)* 

a 2  

-~ -- { - sin a, + i cos a,} of the <-plane. 

The point corresponding to xo in the 2,-plane in the case M, > 1 is 

(M,K+sina,)+(M2,- 1)&(cos2a2-K ) 
K + M2 sin a, 

2, = - in+i log ”. 
The solution is obtained by the introduction of the function 

w(z1) = (aP/aXl) - i (aP/aYl) 

which is regular throughout the upper half-plane, since p is harmonic. In  terms 
of w(z,), the discontinuity conditions (9) and (10) can be expressed by saying that, 
near z1 = xo, 

Equation (4) becomes 

where y = K(cos a, + sin a, tan 0) and tan 0 is replaced in terms of z1 with the 
help of conformal transformations. 

Now logw(z,) is a function with known argument on the real axis of the 
2,-plane. Therefore, w(zl) is given by Poisson’s integral formula, 

where C, is a real constant. 
The above integral, when evaluated for points lying on the real axis, will 

involve two other constants G2 and H ,  which creep in due to the discontinuity 
a t  x1 = xo. Finally, the constants G, and G, merge, and we are left with only two 
constants G and H, which are determined from the conditions (11) and (12) 
respectively. 

The function w(z l )  is completely imaginary on the segments of real axis from 
- 1/i? to - 1 and + 1 to + 1/i?, real on - 1 to + 1 and the value of the argument is 
prescribed on the remaining range by (8). To determine w(x,), the integral on the 
left-hand side of (1 3) is broken into five integrals ranging from - 00 to - 1/Z, 



828 R. 8. Xrivastava and M .  G. Chopra 

- 1 / ~  to - 1, - 1 to + 1, + 1 to + l/i? and + 1/i? to +a. Taking into account the 
boundary conditions and simplifying, w(xl) is given by 

G,GIH(zl - xo)  - 11 
2 ; -  1 

log- W(X1) = log - 
Ql z1-xo 

Making use of the substitutions 

in the first and second integrals of the left-hand side, respectively, and merging 
constant G, with G,, we get 

1 {f(7‘L-=1- P‘} 
1 - ( 2 ,  - [( 1 /K)  - l]} ’ + 

f ( ~ )  andf(7‘) are values of P and P’, respectively, for different values of 7 and 7‘.  

P = tan-, -__ ( ~~~~l,,-,=-~l,~+lj*-,,;,, 
and P’ = tan-, -__ ( ~ ~ ~ ~ ~ ) ~ ~ = ~ = ~ l , T ’ + l , ~ - l ~ = ~ ~  

are the values of the argument of w(xl) on the segments - 00 to - 1 / K  and 1 / K  to 
+ 00, respectively, and the integrals have been approximately evaluated by 
Simpson’s rule. 

The function ~ ( 2 , )  satisfies all the boundary conditions, viz. the function is 
real on the wall, imaginary on the segments of the unit circle, and has argument 
/3 or P‘ on the shock front. On the segments of the real axis - co to - l /Z ,  - 1 / K  to 
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+ 1 / K  and + 1 / K  to +a the value of w(zl) is obtained by substituting p' = 0, 
/3 = p' = 0 and p = 0, respectively. 

The procedure for evaluating pressure on the wall, and numerical discussions 
of the problem are given in the following section. 

Pressure distribution along the wall 
Numerical results have been obtained for the following parameters : 

POIPI a0 a2 ( U  - P a ) / a a  M.2 

0-5 20" 14-93' 3 * 0 2 5 9 5 0.25418 
0.2 20" 10.84" 3.34748 0.43670 

At a point (x, 0) of the wall ( -  1 < x < + 1) the co-ordinates in the 2,-plane 

9) (COS2 a2 - P)}$ are given by 

- Kx + sin cz2 
2, = - in- + tan-l 

Corresponding to points of the 2,-plane the value of z1 can be read with the help 
of the ellipticintegral transformation given by (7) and by the use of Jahnke & Emde 
(1960). As x varies from - 1 to + 1, x1 also varies from - 1 to + 1. The value ofp 
is obtained at  different points of the wall by the integration of the pressure 
de 

where 

( -PP) p2-p;  - a2p2q2 

0 2  -Po) P2 - Po 

has been plotted for different points of the wall. In both the cases the value of 
( p 2  -pL)/[8(p2 -pO)] increases from zero to infinity at the corner; from the corner 
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to the point of intersection of the wall and unit circle it decreases monotonically 
and then maintains a constant value up to the point of intersection of the wall 
and reflected shock. Ter-Minassiants (1969) has brought out the effect of the 
angle of incidence on the pressure distribution curves for fixed shock strength. 

FIGURE 5. Wall pressure distribution and disturbed region 
(pl/po = 2 ,  a, = 20°, 6 = 0.1 rad). 

FIGURE 6. Wall pressure distribution and disturbed region 
( p l / p o  = 5, a. = 20°, 6 = 0.lrad). 

In our case, we have tried to bring out how the increase in shock strength, 
keeping angle of incidence fixed, results in higher pressure deficiency. A com- 
parison between the two curves obtained shows that the value of 

(Pz -Pa/{% - Po)) 

grows as the shock strength is increased. Our choice of values is such that we can 
compare our curves with at  least one of the curves of Ter-Minassiants wherein 
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he has taken the angle of incidence to be 20". The results of the two different 
approaches in regard to the oblique shock diffraction problem conform extremely 
well. 

The authors are extremely thankful to Professor M. J. Lighthill, F.R.S., for 
his valuable guidance and keen interest in the preparation of this paper. Thanks 
are also due to Dr R.R.Aggarwa1 for encouragement and to the Director, 
Defence Science Laboratory, Metcalfe House, Delhi, for his kind permission to 
publish this paper. 
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